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Abstract: 
 
Artemisinin drug resistance is one of the major reasons for malaria treatment failures in the sub-Saharan African 
countries where artemisinin-based combination therapy (ACT) is the first-line treatment for uncomplicated malaria. 
The occurrence of single nucleotide polymorphisms (SNPs) is found to correlate with antimalarial drug resistance. 
With artemisinin, the SNPs occurs at the Kelch 13-propeller gene locus on chromosome 13. The artemisinin drug 
resistance surveillance strategy involves continuous monitoring of Kelch 13-propeller biomarker to detect emergence 
of mutations which could herald drug resistance in the region. In this narrative review paper, we examined existing 
literature to bridge the knowledge gap and accentuate the importance of routine surveillance for artemisinin resistance 
in sub-Saharan Africa. We conducted our search on PubMed database and Google Scholar to identify peer-reviewed 
articles, reports, and abstracts on artemisinin drug resistance using the following keywords; ‘artemisinin drug 
resistance’, ‘antimalarial drug resistance’, ‘artemisinin-based combination therapy’, ‘Kelch 13-propeller’, ‘K13-
propeller gene’, and ‘K13 molecular marker’. The review provided pertinent information on artemisinin derivatives, 
artemisinin-based combination therapy, molecular action of artemisinin, definition of artemisinin resistance, genetic 
basis of artemisinin drug resistance and discovery of Kelch 13, and the importance of artemisinin resistance 
surveillance. Molecular surveillance can provide healthcare policy makers a forecast of impending threats to malaria 
treatment. This is more so when drugs are in combination therapy, for instance, molecular surveillance can give a 
hint that one drug is failing despite the fact that in combination, it is still apparently clinically effective. 
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Résumé: 

La résistance aux médicaments à base d'artémisinine est l'une des principales raisons des échecs du traitement du 
paludisme dans les pays d'Afrique subsaharienne où la polythérapie à base d'artémisinine (ACT) est le traitement de 
première intention du paludisme simple. L'apparition de polymorphismes mononucléotidiques (SNP) est corrélée à la 
résistance aux médicaments antipaludiques. Avec l'artémisinine, les SNP se produisent au locus du gène Kelch 13-
propeller sur le chromosome 13. La stratégie de surveillance de la résistance aux médicaments à base d'artémisinine 
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implique une surveillance continue du biomarqueur Kelch 13-propeller pour détecter l'émergence de mutations qui 
pourraient annoncer une résistance aux médicaments dans la région. Dans cet article de revue narrative, nous avons 
examiné la littérature existante pour combler le manque de connaissances et accentuer l'importance de la surveillance 
de routine de la résistance à l'artémisinine en Afrique subsaharienne. Nous avons effectué notre recherche sur la base 
de données PubMed et Google Scholar pour identifier des articles, des rapports et des résumés évalués par des pairs 
sur la résistance aux médicaments à base d'artémisinine en utilisant les mots-clés suivants; «résistance aux 
médicaments à base d'artémisinine», «résistance aux médicaments antipaludiques», «thérapie combinée à base 
d'artémisinine», «Kelch 13-propeller», «gène K13-propeller» et «marqueur moléculaire K13». L'examen a fourni des 
informations pertinentes sur les dérivés de l'artémisinine, la polythérapie à base d'artémisinine, l'action moléculaire 
de l'artémisinine, la définition de la résistance à l'artémisinine, la base génétique de la résistance aux médicaments 
à base d'artémisinine et la découverte de Kelch 13, ainsi que l'importance de la surveillance de la résistance à 
l'artémisinine. La surveillance moléculaire peut fournir aux responsables des politiques de santé une prévision des 
menaces imminentes pour le traitement du paludisme. C'est d'autant plus vrai lorsque les médicaments sont en 
thérapie combinée, par exemple, la surveillance moléculaire peut donner un indice qu'un médicament échoue malgré 
le fait qu'en combinaison, il est toujours apparemment cliniquement efficace. 

Mots clés: paludisme; artémisinine; résistance; marqueur moléculaire; gène Kelch à 13 hélices 

Introduction: 
 

 Malaria, caused by Plasmodium falcipa- 
rum, places immense burden on resource-poor 
countries, particularly those from sub-Saharan 
Africa. Nigeria is known to contribute the highest 

burden to global malaria morbidity and morta- 
lity. The world recorded an estimated 227 mill- 
ion cases of malaria in 85 malaria endemic coun- 
tries in 2019 (1). Malaria cases rose to 241 mil- 
lion in 2020, an additional increase of 14 million, 
from the previous year. Similarly, in 2020, there 
was an estimated malaria deaths of 627 million, 

a 12% (69, 000 deaths) increase from 2019 
report. Majority of the 29 of the 85 endemic cou- 
ntries which accounted for the 96% of malaria 
cases and deaths are from sub-Saharan Africa 

(1).  There is need for sustained, effective mala- 
ria control programme, to stem the tide of morb- 
idity and mortality arising from malaria, especi- 

ally in all the 85 endemic countries.  
 Effective malaria control programme 
incorporates different kinds of malaria surveil- 
lance methods to its control programme sche- 
me. Some of such malaria surveillance schemes 
include, active case detection for case investi- 

gation (reactive), active case detection of febrile 
cases at community level (pro-active), mass 
screening, uncomplicated P. falciparum cases 
routinely admitted, and case reporting from pri- 
vate sector. Outside these surveillance sche- 
mes, there is also need to monitor susceptibility 
of the mosquito vector to the common insec- 

ticides and the response of the Plasmodium spp 

to the current antimalarial drugs in use. 
 Molecular markers associated with anti- 
malarial drug resistance are being used to 
monitor and map the extent of spread of the 
resistance and hence plan effectively for neces- 
sary containment programmes. Molecular mar- 

kers are excellent tools for surveillance of anti-
malarial drug resistance. They have been useful 
as predictors of emerging or existing levels of 

antimalarial drug resistance in many malarial 

endemic countries. Three of the molecular mar-
kers often used to monitor resistance to ACTs 
include the P. falciparum multidrug resistance 1 
(PfMDR1), P. falciparum Ca2+-ATPase (PfATP6) 
and Kelch-13 propeller domain (PfK13) marker.  
 Perhaps, if there had been an effective 

surveillance on the spread of chloroquine and 
sulfadoxine/pyrimethamine resistance to other 
malaria endemic nations early enough, followed 
by containment programmes, the global resis- 
tance spread experienced with those erstwhile 
first-line drugs would have been averted. In 
Nigeria, chloroquine and sulfadoxine/pyrimetha- 

mine antimalarial drugs were used as first-line 
of drugs for treatment of malaria. However, the 
result of the 2002 and 2004 antimalarial efficacy 

studies showed that chloroquine and sulfado- 
xine/pyrimethamine were no longer adequate 
for national first line use (2). The attendant ris- 

ing cases of treatment failures with these drugs, 
strengthened by the recommendation of the 
World Health Organization (WHO), led to the Fe- 
deral Ministry of Health in Nigeria proscribing 
their use as first-line for treatment of malaria. 
The need to move from monotherapy antimal- 
arial regime to more effective combination 

therapy rose, and with further efficacy trials in 
2004, two artemisinin-based combination thera- 
pies were recognized. Nigeria, thus moved from 
the use as first-line, the failing chloroquine and 
sulphadoxine/pyrimethamine antimalarial drugs 
to artemisinin combination therapy (ACT) in 
2005 (2).  

 There has been considerable progress in 
combating the malaria burden globally. Mortality 
rates arising from malaria was estimated to 
have declined by 62% globally between 2000 
and 2015 and by 29% between 2010 and 2015. 
Seventeen countries eliminated malaria (attai- 

ned zero indigenous cases for 3 years or more) 
(3). In sub-Saharan African countries, the num- 
ber of people infected with malaria parasites has 
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declined from 131 million in 2010 to 114 million 

in 2015 (3). All these were made possible by 
adherence to WHO-recommended intervention 
policies and strategies: vector control, larval 
control, intermediate preventive therapy (IPT) 

in infants, children and pregnant women, impro- 
ved and accessible diagnostic tools, and prompt 
treatment of cases.  
 The introduction of highly effective ACTs 
in 2005 by the WHO, particularly added to the 
gains (4). However, the gains made so far, seem 
to be threatened by the recent emergence in 

South East Asia (Cambodia, Myanmar, Thailand, 
Vietnam, and Laos) of P. falciparum resistant to 
ACTs (5,6,7). South East Asia has been noted as 
the centre hub for previous development and 
subsequent spread of P. falciparum strains resis- 

tant to erstwhile effective and potent antimala- 

rial drugs.  
 
Artemisinin derivatives: 
 Artemisinin was discovered in China from 
medicinal plant, Artemisia annua, locally known 
as Qinghao (8). The discovery of artemisinin as 
an antimalarial drug is tied to the urgent military 
need that came during the Vietnam War in 
1960s and 1970s. The war witnessed huge loss 

of military personnel on both warring sides. To 
assuage further loss and deal with the effect of 
chloroquine-resistant P. falciparum, the Chinese 
government responded to the request of the 
North Vietnamese by researching to develop 
new antimalarial drugs. It was this research that 

led to the discovery of artemisinin (8,9).  
 At the Academy of Chinese Medical Sci- 
ences in Beijing, a team of researchers found 
that wormwood extract was 100% effective aga- 
inst rodent malaria, although the outcome was 
inconsistent. The inconsistency in result was 
later discovered to be due to the use of the tra- 

ditional method of extraction which was destroy- 
ing the pharmacologic constituent of the extr- 
acts. This understanding paved way for the dev- 
elopment of an alternative extraction method of 
using cool ether. The problem of inadvertently 
damaging the pharmacologic constituent was 
solved and with further researches, they were 

able to purify the effective component and dete- 
rmine the structure to be an endoperoxide loca- 
ted within a sesquiterpene backbone (10,11).  

 Artemisinin is a sesquiterpene lactone, 
and since its initial discovery, pharmacologists/ 
pharmacists have tried to modify the original 

structure at C10 position to produce more pot- 
ent derivatives such as artesunate, artemether, 
artemotil, arteether, and dihydroartemisinin 
(DHA). Originally, artemisinin and its derivatives 
were used to treat malaria, however activities 
against cancer (12), parasites such as Toxoplas- 

ma (13), Clonorchis (14), Schistosoma (15), 

Leishmania (16), and viruses (17) have recently 
been documented. The artemisinin prototype 
and its derivatives possess important pharma- 
cological qualities that heighten their antimala- 

rial activity such as rapid onset of action, short 
half-life and activity against different stages in 
the life cycle of the malaria parasite (18). They 
are also known to kill the sexual stages (game- 
tocytes) of malaria parasites in the circulation 
(19). 
 

Artemisinin-based combination therapy (ACT): 
What it is! 

 The idea of combining an artemisinin 
with another structurally unrelated antimalarial 
drug was to optimize malaria treatment. This 

was seen as the best therapeutic strategy to 
improve treatment efficacy and slow down the 

development of resistance to the individual 
drugs in the combination (20,21). The multidrug 
concept of treating infectious diseases has been 
applied in the treatment of human immuno- 
deficiency virus (HIV) infection and tuberculosis. 
It is believed that the combination therapies 
which involve the use of drugs with different 

targets and mechanism of action, decreases the 
chance of emergence of drug resistance.  
 The treatment success achieved from 
combination therapy is underpinned by the ass- 
umption that drug resistance depends on DNA 
mutation. The assumption maintains that provi- 

ded that the constituent drugs in the combina- 

tion have different modes of action, the proba- 
bility of a parasite developing resistance to both 
drugs simultaneously will be highly reduced 
compared to developing resistance to one drug 
(22). Most artemisinins combined treatments 
contain one of the three artemisinin derivatives 

including artemether, artesunate or dihydroart- 
emisinin (DHA). Blood esterases and hepatic 
cytochrome P450 enzymes respectively convert 
oral artesunate and artemether to DHA, but they 
are active themselves (23). Although artemisi- 
nins have short elimination half-life of about 1 
hour, the time is ample for maximal effects aga- 

inst the different life-cycle stages of the malaria 
parasites. However, to make-up for the rapid 
elimination of the active metabolite (DHA) from 

the blood stream, the administration of artemi- 
sinin with long-acting agents is required (24).  
 Two prominent pharmacodynamic pro- 
perties of artemisinin determine how best they 

are used. One is their ability to kill both ring 
stage and more mature trophozoites rapidly, a 
property that underlie their importance in life-
saving efficacy in severe disease and in cure 
(25). The other property is that patients treated 
with artemisinin always have a subpopulation of 
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artemisinin-treated ring-stage parasites enter a 

state of dormancy, avoiding being killed out-
rightly. This subpopulation of parasites resume 
growth a few days or weeks after stoppage of 
therapy (26). This is seen as the reason for the 

approximately 10% failure rates observed with 
the use of artemisinin monotherapy in malaria 
treatment (27). It was for this phenomenon that 
artemisinins are best used in combinations with 
a long-acting partner drug. In this way, the 
artemisinin derivative kills the most of the 
parasites within a few days, while the few rem- 

aining parasites are killed by the long-acting 
partner drug (28).  
 Five of the combined formulations curr- 
ently recommended by the WHO for the treat- 
ment of uncomplicated P. falciparum malaria 

are; artesunate-amodiaquine, artesunate-mefl- 

oquine, artesunate-sulfadoxine/pyrimethamine, 
dihydroartemisinin-piperaquine and artemether 
-lumefantrine (29). Artesunate-amodiaquine, 
artesunate-mefloquine and artemether-lumefa- 
ntrine fixed-dose ACTs have been implemented 
as first-line treatment for uncomplicated malaria 
in most malaria endemic countries (30). Pipera- 

quine was originally added as partner drug to 
ACTs for the first-line treatment of uncomplica- 
ted confirmed-malaria cases in Cambodia, Viet- 
nam, Myanmar and China (31). A new ACT rec- 
ently introduced into the market is artesunate-
pyronaridine (32). The WHO has recommended 
ACTs since 2005, and treatment with these 

drugs provide excellent cure rates, above the 

minimum acceptable threshold of 90% (23).  
 
Molecular action of artemisinin: 

 The knowledge of exactly how artemisi- 
nin and its derivatives work at the molecular and 
cellular level to bring about the cellcidal effect 
has been elusive for a while. Several models 

from in vitro medicinal chemical studies have 
tried to explain this at one or the other, how- 
ever, it seems consensus has not been reached 
yet. A known basic feature of artemisinin is that 
they are unstable in the presence of alkaline or 
acidic milieu, and they react in the presence of 
peroxide with certain reducing agents such as 

Fe2+, Cu2+ and haeme. The endoperoxide bridge 
has been shown to be critical to artemisinin’s 
antimalarial and anti-cancer properties. The 

pharmaceutical properties of artemisinin are 
thought to be associated with their reductions, 
though the mechanisms that bring about this 

reduction is still uncertain (33,34).  
 Four models considered to be possible 
modes of action of artemisinin include; haeme-
detoxification pathway interference, induction of 
alkylation of translationally controlled tumour 
protein, interference with mitochondrial funct- 

ion, and inhibition of the sarco/endoplasmic reti- 

culum membrane calcium transporting ATPase 
6. A study by Sun et al., (35), using the baker’s 
yeast (Saccharomyces cerevisiae) demonstrated 
the molecular and cellular properties of artemi- 

sinin. In the model, they proposed that the anti-
mitochondrial and haeme-mediated reactive oxy 
gen species (ROS)-generating properties consti- 
tute two cellcidal actions of artemisinin.  
 
Definition of artemisinin resistance: 

 Adopting a global consensus definition 
of artemisinin resistance has been a big chall- 

enge. However, a proposal was made some- 
times ago that a clinical case of artemisinin resi- 
stance would have the following attributes (36); 
(i) persistence of parasites on the 7th day after 

the start of treatment or re-emergence of para- 
sites within 28 days after the start of treatment; 
(ii) adequate plasma concentrations of dihydro- 

artemisinin, a major artemisinin metabolite; (iii) 
prolonged parasite clearance time; and (iv) 
reduced in vitro susceptibility of the parasite. 
 A study carried out at different sites in 
Western Cambodia in 2007-2008 reported a 
significant delay in parasite clearance time follo- 
wing treatment with artesunate monotherapy 

and with an ACT, when compared with that 
conducted in eastern Thailand (37). In any 
patient from South Asia with uncomplicated P. 
falciparum malaria, and a starting parasite count 
of 10,000 parasites/µl of blood, artemisinin resi- 
stance is defined as a parasite clearance half-life 

5 hours following treatment with an artesunate 
monotherapy or an ACT (38). In the study done 
by Witkowski et al., (39) in 2013, they defined 
artemisinin resistance in P. falciparum as a para- 
site survival rate 1% in the ring-stage survival 
assay (RSA0-3h) in vitro. The assay involved 
adapting clinical parasite isolates to culture, and 

synchronizing them at the early-ring stage (0-3 
hr post-invasion of red blood cells), exposing 
them to a pharmacologically-relevant dose of 
DHA for 6 hours and then culturing for 66 hours 
further. The survival rates were assessed by 
counting the proportion of viable parasites that 
developed into second-generation rings or tro- 

phozoites with normal morphology at 66 hours 
(RSA0-3h), after drug removal. 
 
Genetic basis of artemisinin drug resistance and 
discovery of Kelch 13: 

 The slow parasites clearance rates expe- 
rienced with administration of artemisinin prom- 
pted many genotype-phenotype research works 

that were aimed at unravelling the phenome- 
non. A region on P. falciparum chromosome 13 
was found to be strongly associated with slow 
clearance of the parasites in genome-wide stu- 
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dies (40). The major breakthrough in the search 

of genetic basis of the reduced susceptibility of 
the P. falciparum parasites to artemisinin came 
in 2013 when parasites subjected to artemisinin 
pressure, were cultured for 5 years and then 

sequenced (41). A mutation was found close to 
the chromosome 13 region in the genome asso- 
ciation studies (40,42). Ariey et al, (41) by com- 
paring the whole-genome sequences of drug-
selected and unselected parasite lines, identified 
on chromosome 13, a single-nucleotide polym- 
orphism (SNP) in the PF3D7_1343700 gene that 

encodes a M4761 substitution in the propeller 
domain of a kelch protein. This kelch protein 
which contains a ‘kelch’ motif is now generally 
being referred to as K13.  
 The use of K13-propeller polymorphism 

as a molecular marker of artemisinin resistance 

in Cambodia was validated after demonstrating 
that 17 different K13 mutations were present in 
parasites from this country and that the predo- 
minant C580Y mutation had increased in preva- 
lence especially in areas where artemisinin resi- 
stance was so common. Also, that the common 
mutations; C580Y, R539T, and Y493H were ass- 

ociated with prolonged clearance half-lives and 
elevated RSA0–3h survival rates (43). Many more 
researchers have since conducted more studies 
establishing the fact that K13-propeller polym- 
orphism is a marker for artemisinin resistance 

even in other Great Mekong Regions in South- 

east Asian countries including Thailand, Viet- 
nam, China and Myanmar, with the K13-prop- 
eller mutation findings being also associated 
with slow parasite clearance (44,45).  

 In Africa, some studies have reported 
dozens of K13-propeller mutations, many of 
which are different from those found in SE Asia 
(46-48). These African variants of mutations are 
still at low frequency, and are yet to be associa- 
ted with artemisinin resistance in patients and in 
vitro in 17 countries (49-51). However, more 

recently, validated PfK13-propeller mutations 
have been reported in India, South America, and 
on the African continent, in Uganda and Rwanda 
(52-57). Also in Nigeria, V692G, B664I, Q661H, 
and C469C mutations detected in a study by 

Fehintola et al., (58) were consistent with dela- 

yed parasitological clearance. Few other studies 
conducted in Nigeria, demonstrated presence of 
PfK13 propeller gene mutations, however, they 
could not be linked to ACT failure or delayed cle- 
arance (59,60). 
 Different PfK13 mutations produce var- 
ying effects on the clearance phenotype. Box 1 

below shows the WHO list of candidate/associa- 
ted and validated markers of artemisinin partial 
resistance and the criteria for the classification. 
The list of candidate and validated markers is 
updated continually (Table 1).  

 

 

 
Box 1: WHO list of candidate/associated and validated markers of artemisinin partial resistance and the criteria for classification (61) 

 
Candidate or associated PfK13 markers of artemisinin partial 

resistance 
A statistically significant association (p<0.05) between a PfK13 

mutation and clearance half-life >5 hours or day 3 

parasitaemia via a chi-squared test or appropriate 

multivariable regression model on a sample of at least 20 

clinical cases 

OR 

Survival of >1% using the RSA0–3h in at least five individual 

isolates with a given mutation or a statistically significant 

difference (p <0.05) in the RSA0–3h assay between culture-

adapted recombinant isogenic parasite lines, produced using 
transfection and gene editing techniques, which express a 

variant allele of PfK13 as compared with the wild-type allele 

 

Validated PfK13 markers of artemisinin partial resistance Both requirements 1 and 2 are met 
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Table 1: PfK13-propeller gene markers of artemisinin partial resistance (61) 

 

Validated markers Candidate or associated markers 

F446I P574L P441L 

N458Y C580Y G449A 

C469Y R622I C469F 
M476I A675V A481V 

Y493H  R515K 

R539T  P527H 

I543T  N537I/D 

P553L  G538V 

R561H  V568G 

 
Why surveillance? 
 Artemisinin combination therapies are 

currently critical in the management of uncomp- 
licated P. falciparum malaria in all sub-Saharan 
African nations, including Nigeria. No new drugs 
of equivalent efficacy have been developed to 

replace them and even if there are plans to pro- 
duce more potent drugs, it will take some years. 

The emergence of artemisinin resistance in 
South East Asian countries is thus, a threat to 
the global malaria control and elimination action 
plans.      
 There is the premonition that artemisi- 
nin-resistant parasites will behave the same way 
they did with chloroquine and later pyrimetha- 

mine, spread westward to reach Africa. If this 
should happen, this would add to already high 
burden of malaria in this region. Emergence of 
chloroquine resistance was estimated to have 
caused the death of millions African children 
(62). This trend should not be allowed to repeat 
itself. There is therefore need for a surveillance 

scheme to be put in place in order to monitor 

the emergence and spread of artemisinin-resis- 
tance to other malaria endemic regions which 
should prompt drastic containment measures. 
 

Conclusion: 
 

 The emergence and subsequent spread 
of antimalarial drug resistance has been one of 
the main challenges to malaria containment in 
many malarial-endemic areas such as sub-
Saharan African countries. Detection and chara- 
cterization of resistance to chloroquine and sulf- 

adoxine/pyrimethamine that were once used as 
first-line in the treatment of malaria occurred 
after resistance had already spread globally, 
hence there was no opportunity for contain- 

ment.  
 With the emergence of artemisinin drug 
resistance in Southeast Asia, and in line with the 

WHO Global Plan for Artemisinin Resistance 
Containment (GPARC), there is need to proacti- 
vely avert the spread of artemisinin resistance 
to sub-Saharan Africa by constantly monitoring 
its spread and instituting containment measu- 
res. 
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